Comparison studies on safety and efficacy different generations of recombinant products

Alfonso Iorio Parsian Azadi Hotel-Tehran-Iran, October 23<sup>th</sup> 2014







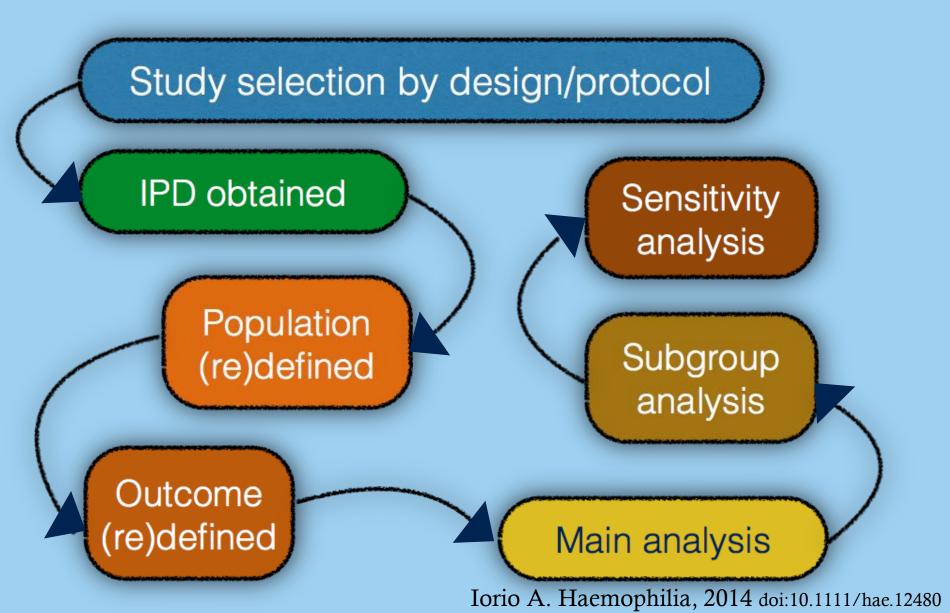
### **Alfonso Iorio**

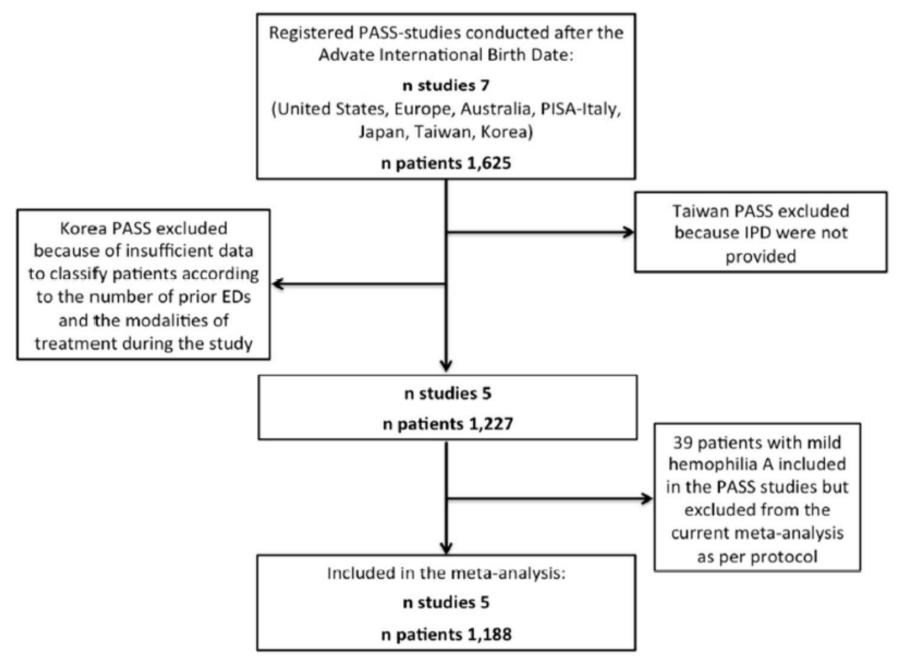
- Associate Professor, Clinical Epidemiology & Biostatistics and Medicine, McMaster University
- Director, Adult Hemophilia Centre, Hamilton
- Chair, Health Information Research Unit, McMaster University



- Co-founder Italian Registry for Congenital Coagulopathies;
- Chair, Data and Demographics Committee, WFH
- Chair Canadian Hemophilia Registry Program
- Associate Editor: Blood Coagulation Disorders of the Cystic Fibrosis and Genetic Disorders Review Group of the Cochrane Collaboration

#### References


- Iorio, A. CDRS, 9, CD003429
- Iorio A. Haemophilia, 2014 doi:10.1111/hae.12480
- Fischer, K. Blood, 2013: 122(7), 1129–36.
- Xi, M. JTH, 2013; 11(9), 1655–62.
- Iorio A. JTH 2010;8:1256–65.


## Efficacy

### Evidence about efficacy

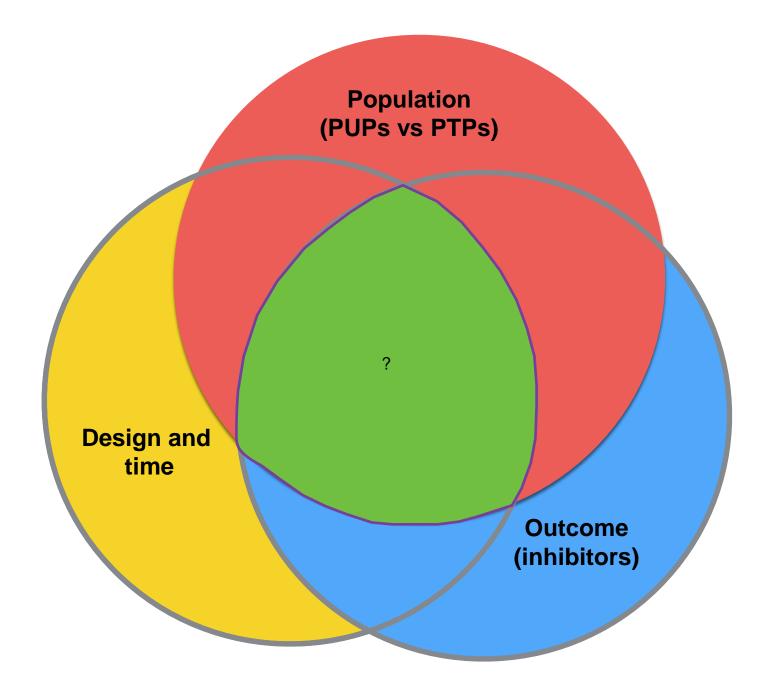
- Level I: Prophylaxis reduces bleeding rate by 10
  Cochrane Collaboration SR:
- Level II: Higher intensity produces better results
   Swedish vs Dutch Regimen
   Canadian escalating dose study
- Level II: Tailoring to the individual need reduces wastage and costs
  - Collins
  - MUSFIT

#### **Post Authorization Safety Studies**





Iorio A. Haemophilia, 2014 doi:10.1111/hae.12480


#### PASS Effectiveness Outcomes

| Secondary Analyses                    | Patient<br>Number |                        |
|---------------------------------------|-------------------|------------------------|
| Annualized Bleeding Rate              |                   | median (Q1, Q3)        |
| All patients                          | 1,140             | 3.83 (0.60, 12.90)     |
| Patients prescribed OD at enrolment   | 421               | 10.38 (2.27, 27.29)    |
| Prophylaxis (on study, any frequency) | 707               | 2.00 (0, 6.73)         |
| Prophylaxis (on study, ≥twice/week)   | 560               | 1.67 (0 <i>,</i> 4.80) |

Iorio A. Haemophilia, 2014 doi:10.1111/hae.12480







### PTPs (vs PUPs) as a model to study immunogenicity

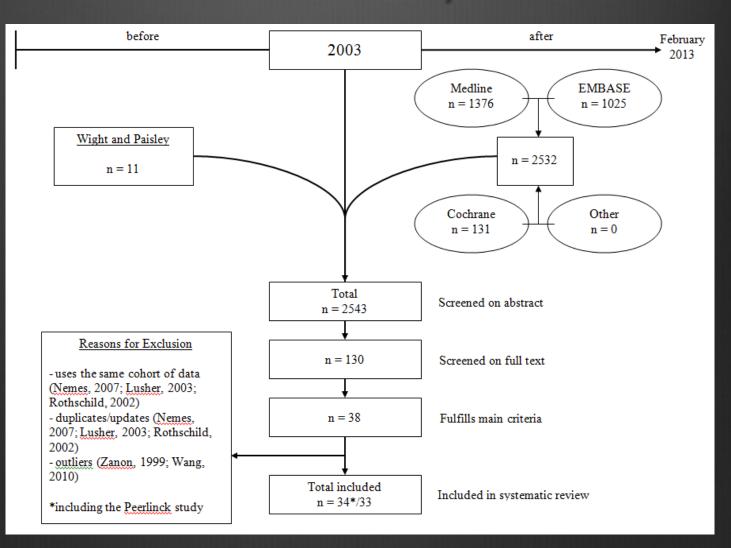
- Strenghts
  - Already tolerized
  - No other con causes
  - Easier to recruit
    - adults
    - low, if any, risk of events

- Weaknesses
  - ..to a specific FVIII
  - Assumptions!!
  - Easy and optimal are enemies
    - Low prevalence
    - BU? NIAb? threshold?



# Characteristics of inhibitors in PTPs

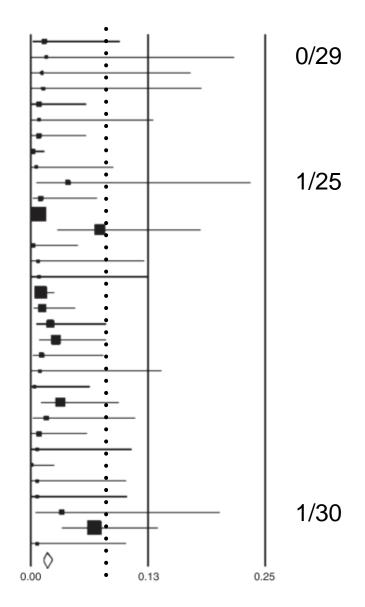
As a result of our systematic review, we identified:


- •39 de novo inhibitors reported in 19 publications. Individual patient data has been collected for:
  - •29 (74%) inhibitor cases overall
    - •14 (36%) from CRFs completed by study investigators
    - •15 (39%) extracted from patient-level information available in the published reports.

| Interim results - inhibitor characteristics |                       |  |  |
|---------------------------------------------|-----------------------|--|--|
| Characteristic                              | Range ( <i>n</i> =29) |  |  |
| Age at inhibitor diagnosis (years)          | 2 - 67                |  |  |
| Peak titre level (BU/ml)                    | 0.5 - 75              |  |  |
| Last known titre level (BU/ml)              | 0 - 10.4              |  |  |
| Patient follow-up (months)                  | 1 - 143               |  |  |

## Evidence in PTPs

#### **F**


### PTP meta-analysis



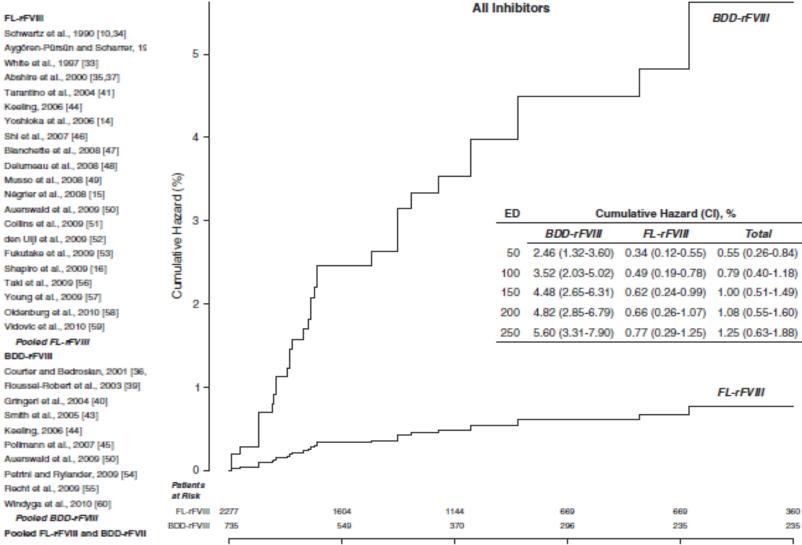


#### Study name

|                   | Event | Lower | Upper |
|-------------------|-------|-------|-------|
|                   | rate  | limit | limit |
| Abshire           | 0.014 | 0.002 | 0.096 |
| Auerswald         | 0.017 | 0.001 | 0.217 |
| Avgoren-Pursun    | 0.013 | 0.001 | 0.171 |
| Aznar             | 0.014 | 0.001 | 0.182 |
| Bacon             | 0.009 | 0.001 | 0.060 |
| Blanchette        | 0.009 | 0.001 | 0.131 |
| Courter           | 0.009 | 0.001 | 0.060 |
| Delumeau          | 0.002 | 0.000 | 0.016 |
| Den Uijl          | 0.006 | 0.000 | 0.089 |
| Gringeri (1)      | 0.040 | 0.006 | 0.235 |
| Gringeri (2)      | 0.011 | 0.001 | 0.072 |
| Kempton           | 0.008 | 0.004 | 0.017 |
| Mauser-Bunschoten | 0.074 | 0.028 | 0.181 |
| Musso             | 0.003 | 0.000 | 0.051 |
| Negrier           | 0.008 | 0.001 | 0.121 |
| Nemes             | 0.009 | 0.001 | 0.125 |
| Oldenburg         | 0.011 | 0.005 | 0.026 |
| Pollmann          | 0.012 | 0.003 | 0.048 |
| Recht (1)         | 0.021 | 0.005 | 0.081 |
| Recht (2)         | 0.027 | 0.009 | 0.081 |
| Schwartz          | 0.012 | 0.002 | 0.078 |
| Shi               | 0.010 | 0.001 | 0.141 |
| Siegmund          | 0.004 | 0.000 | 0.064 |
| Singleton         | 0.032 | 0.010 | 0.094 |
| Smith             | 0.017 | 0.002 | 0.112 |
| Tarantino MD      | 0.009 | 0.001 | 0.061 |
| Valentino         | 0.007 | 0.000 | 0.108 |
| Vidovic           | 0.002 | 0.000 | 0.025 |
| Vossebeld         | 0.007 | 0.000 | 0.103 |
| White             | 0.007 | 0.000 | 0.104 |
| Windyga           | 0.033 | 0.005 | 0.202 |
| Yoshioka          | 0.068 | 0.033 | 0.136 |
| Young             | 0.007 | 0.000 | 0.103 |
|                   | 0.017 | 0.013 | 0.023 |
|                   |       |       |       |






#### Inhibitor rates, selected recombinant FVIII

| Product        | Studies | Rate<br>(x 100 py)                         | 95% CI       |  |
|----------------|---------|--------------------------------------------|--------------|--|
| Advate         | 9       | 0.10                                       | 0.05-0.18    |  |
| Kogenate       | 9       | 0.12                                       | (0.04-0.33)* |  |
| Refacto        | 8       | 0.19                                       | 0.11-0.34    |  |
| PD factor VIII | 4       | 0.09                                       | 0.02-0.45    |  |
|                | * 0.    | * 0.26 (0.16 - 0.44) at fixed effect model |              |  |

### Sensitivity analysis

| Variable    | Proportion              | Heterogeneity     |         |
|-------------|-------------------------|-------------------|---------|
| Design      |                         | within            | between |
| RCT(4)      | 0.012 (0.009-<br>0.041) | Low               |         |
| Prosp (20)  | 0.015 (0.011-<br>0.027) | Low<br>0.013      | P=0.231 |
| Retrosp (8) | 0.019<br>(0.012-0.030)  | Moderate<br>0.020 |         |
| Other (3)   | 0.010 (0.04-<br>0.029)  | Low               |         |





Time at Risk (ED)

Aledort LM et al. JTH 2011;9:2180-92. Iorio A et al. JTH 2011;9:2176-9. Aledort LM et al. JTH 2011;9:2325-7.

Total



Science is built up of facts, as a house is built up of stones; but an accumulation of facts is no more science than a heap of stones is a house

#### Henri Poncare, 1854–1912

#### The EUHASS study

#### Strengths

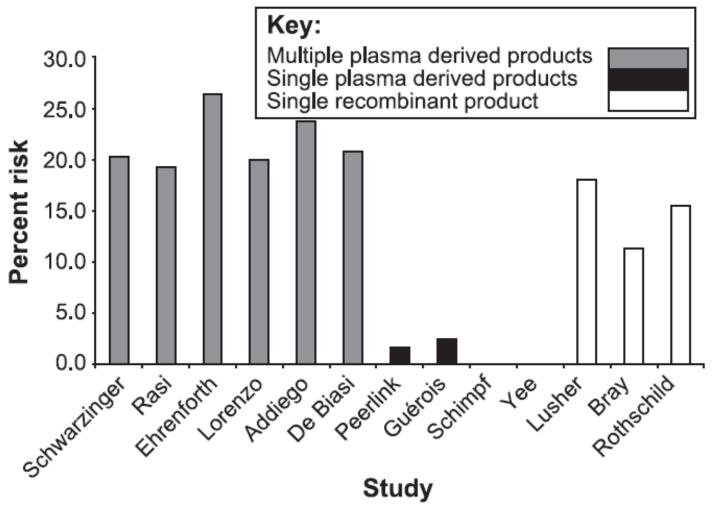
- Prospective, very large inception cohort
- Controlled (parallel, headto-head)

#### • Limitations

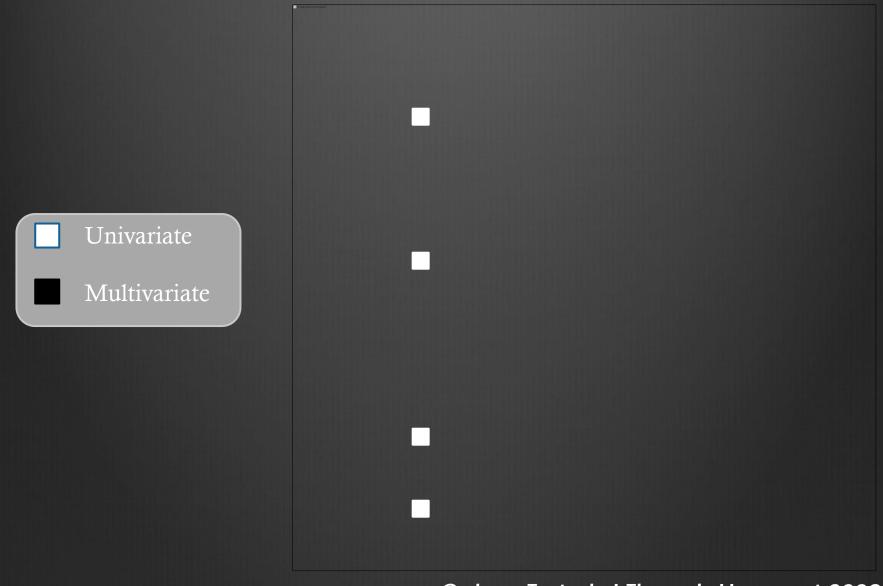
- Minimal information collected
- No multivariable approach
- Confounding still possible
- Dynamic cohort not always at steady-state

### **EUHASS: Inhibitors in PTPs**

| Product | Inhibitors | Pt/yr | Rate | (95% C.I.)    |
|---------|------------|-------|------|---------------|
| 1       | 5          | 4656  | 0.11 | (0.03-0.25)   |
| 2       | 1          | 1987  | 0.05 | (0.00 - 0.28) |
| 3       | 6          | 3519  | 0.17 | (0.06 - 0.37) |
| 4       | 3          | 2338  | 0.13 | (0.03 - 0.37) |


Data from the EUHASS annual reports to the Investigators

## Findings in PTPs


- No difference in inhbitor rates between
  - Plasma derived and recombinants
  - Different recombinants
- When the proper analysis method is used

### Evidence in PUPs

#### Haemophilia (2003), 9, 418–435 J. WIGHT and S. PAISLEY



#### .."homogeneous results"



#### Calvez T et al J Thromb Haemost 2008



### Inhibitor risk in PUPs: a meta-analysis

- Aim of the study
  - To produce an updated systematic review of the evidence regarding the role of PD versus R factor concentrates in modulating inhibitor incident rate

To investigate the role of study- and patient-level characteristics on the estimated effect

Iorio A et al. JTH 2010;8:1256–65.

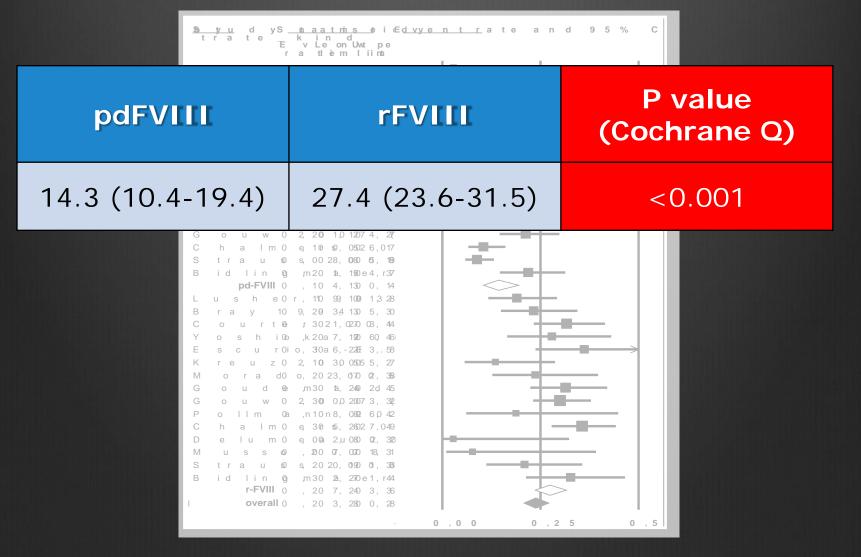


#### Results

#### **STUDY SELECTION**

17 pdFVIII cohorts 15 rFVIII cohorts

19 prospective cohorts13 retrospective cohorts


2094 pts / 420 inhibitors

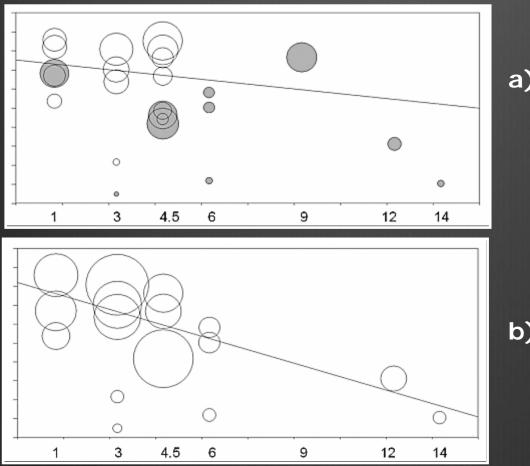
#### +13 over Wight and Paisley

Iorio A et al. JTH 2010; 8: 1256–65.

#### **F**

#### Pooled Analysis of Single Arm Studies (Pooled incidence rates)




Iorio A et al. JTH 2010;8:1256–65.



### ANOVA

|                             | F     | Prob > F | Adjusted R <sup>2</sup> |  |
|-----------------------------|-------|----------|-------------------------|--|
| Univariable Models          |       |          |                         |  |
| kind of concentrate         | 17.51 | 0.0002   | 0.35                    |  |
| study design                | 7.96  | 0.0248   |                         |  |
| Multivariable Model         |       |          |                         |  |
| MODEL                       | 7.26  | 0.0123   | 0.80                    |  |
| kind of concentrate         | 0.26  | 0.6287   |                         |  |
| study design                | 0.08  | 0.7903   |                         |  |
| kind of conc*test freq      | 0.41  | 0.5445   |                         |  |
| Kind* of conc*study period  | 0.25  | 0.6355   |                         |  |
| Kind of conc*FUP            | 0.93  | 0.3721   |                         |  |
| study design * test freq    | 2.75  | 0.1485   |                         |  |
| study design * study period | 0.08  | 0.7914   |                         |  |
| study design * FUP          |       |          |                         |  |

### Meta-regression



a) Testing frequency (months) White = rFVIII Grey = pdFVIII

 b) Testing frequency (months)
 Only prospective studies

Y-axis shows the logit of the incidence rate of inhibitor. Each bubble represents a single study, the diameter being inversely proportional to the variance of the study.

Iorio A et al. JTH 2010;8:1256–65.



### EAHAD

#### COLLABORATIVE GROUP ON TREATMENT RELATED INHIBITOR RISK

Predictors of inhibitor development in Hemophilia A previously untreated patients: the role of factor concentrate type.

# An individual patient data meta-analysis.

Iorio A et al. WFH 2012, Paris, Submitted

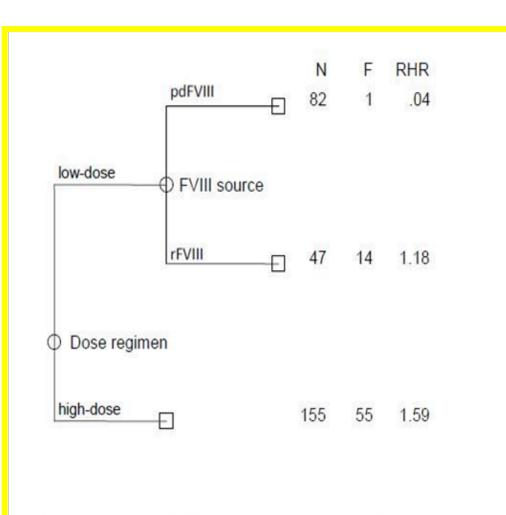
### Study design

- Pooled cohort of consecutive patients from 6 Hemophilia Centres (5 European, 1 Israeli)
- 284 PUPs born between 1967 and 2011
- Moderate-Severe<sup>1</sup> Hemophilia A
- Treated with pdFVIII or rFVIII concentrates, with highdose<sup>2</sup> or low-dose regimen
- Followed up until =>200 ED

 <sup>1</sup>Baseline FVIII level ≤ 0.05 IU/dl
 <sup>2</sup>Median single dose received within 8 to 12 weeks after therapy start > 30 IU/kg of body weight



### Study methods


Cox regression analysis

CART

- Propensity score matching
  - To adjust a Cox model
  - To calculate the Average effect of Treatment on the Treated (ATT)

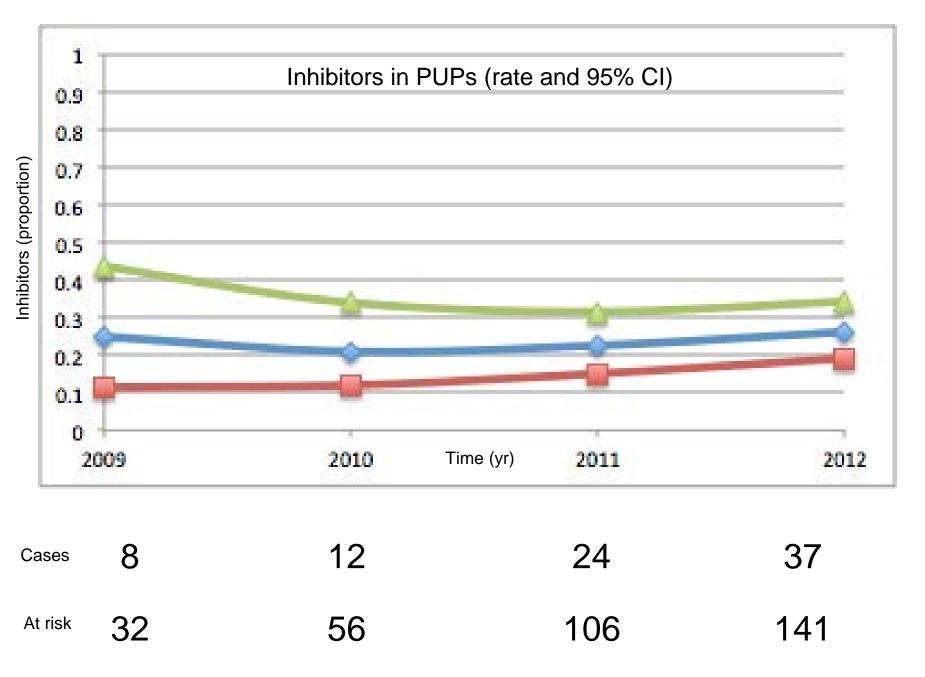


# Classification and Regression Tree (CART)



Legend: N, number; F, Failures; RHR, Relative Hazard Ratio.

Variables included :

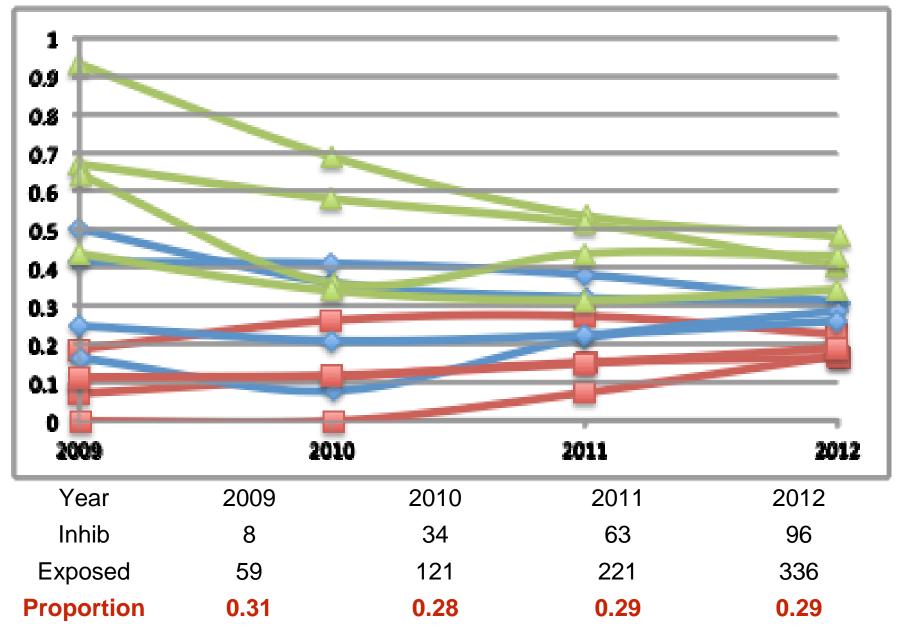

- FVIII source
- dose regimen




### Unpublished data omitted

Analysis results did show that, when adjusting for covariates, there is no difference between plasma derived and recombinant

Paper submitted to Thrombosis and Haemstasis




Data from the EUHASS annual reports to the Investigators



Data from the EUHASS annual reports to the Investigators

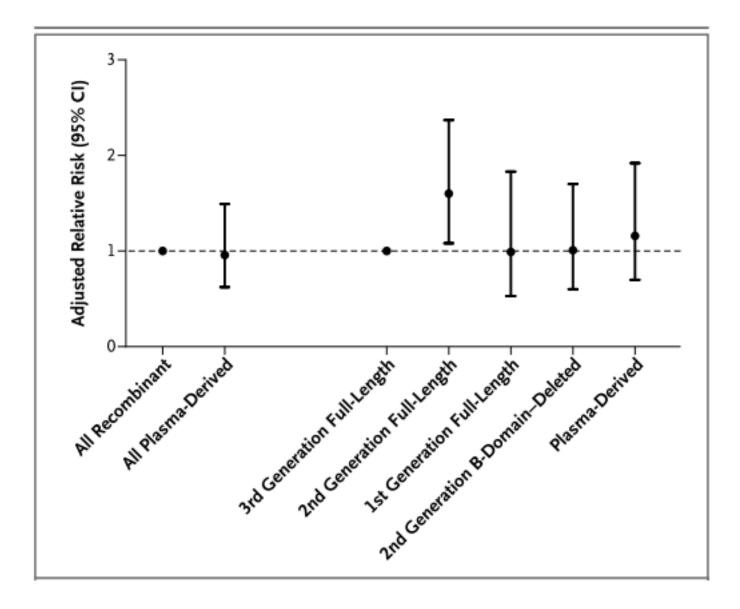




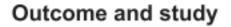
Data from the EUHASS annual reports to the Investigators

#### ORIGINAL ARTICLE

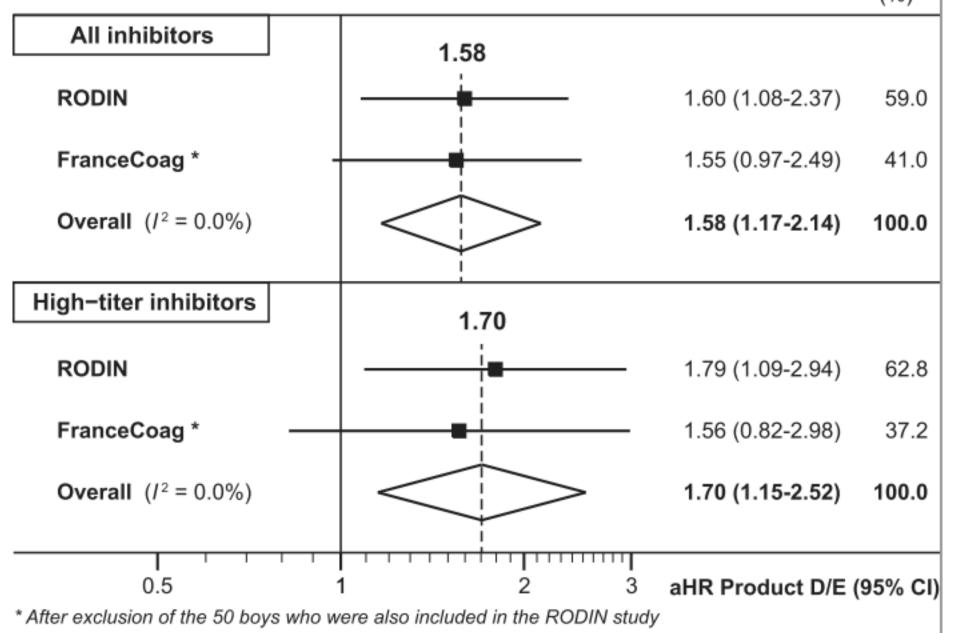
### Factor VIII Products and Inhibitor Development in Severe Hemophilia A


Samantha C. Gouw, M.D., Ph.D., Johanna G. van der Bom, M.D., Ph.D., Rolf Ljung, M.D., Ph.D., Carmen Escuriola, M.D., Ana R. Cid, M.D., Ségolène Claeyssens-Donadel, M.D., Christel van Geet, M.D., Ph.D.,
Gili Kenet, M.D., Anne Mäkipernaa, M.D., Ph.D., Angelo Claudio Molinari, M.D., Wolfgang Muntean, M.D., Rainer Kobelt, M.D., George Rivard, M.D., Elena Santagostino, M.D., Ph.D., Angela Thomas, M.D., Ph.D., and H. Marijke van den Berg, M.D., Ph.D., for the PedNet and RODIN Study Group\*

# The RODIN study


#### Strengths

- Naturalistic, large
- Controlled (parallel, head-tohead)
- Very high data quality

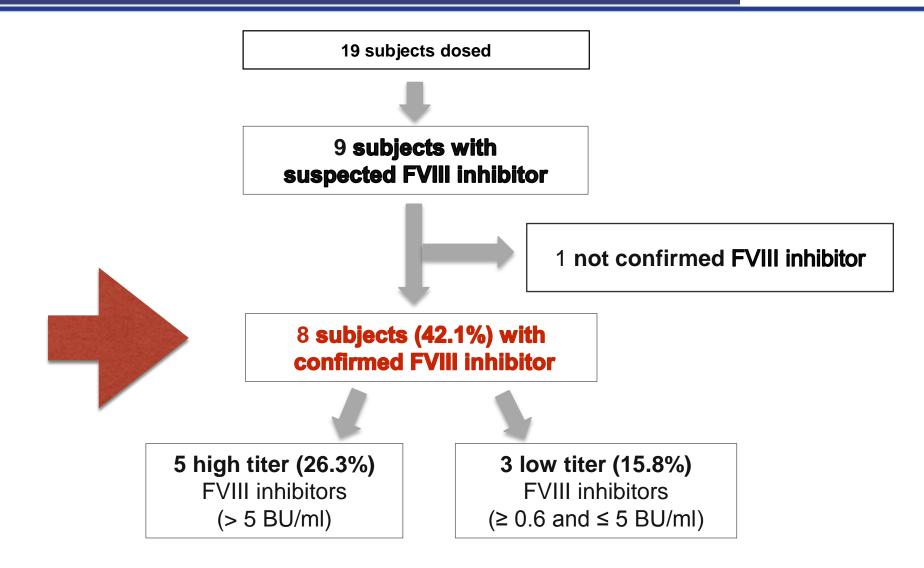

- Weaknesses
  - Residual confounding
  - Intrinsic to the design
  - Analytical approach



Gouw, SC et al. The New England Journal of Medicine, 368(3), 231-9.



aHR (95% CI) Weight (%)




# Unpublished data omitted

 Sensitivity analysis of the French data show that all the effect is due to 3 centers

These were those observing low inhbitor rate with Kogenate in the early 2000, and likely selected high risk patients to be treated with kogenate Inhibitor incidence per protocol





Courtesy of Guenter Auesrwald: ASH, New Orleans, 2013.



Role of concentrate type: PUPs

### Not any important difference

### suggested by assessment of

the overall body of evidence

# Summary .1

- The risk of inhibitors associated with treatment (source / dose)
  - Cannot be estimated from observational studies without accounting for the effect of confounders
  - The interaction between the candidate predictor and the confounders should always be tested



# Summary .2

- The risk of inhibitors associated with treatment (source / dose)
  - Might benefit from use of sophisticated statistical analysis tecniques, eg propensity score analysis
  - This might:
    - Increase consistency of evidence from imperfect observation
    - Help in better planning future studies









McMaster University Medical Centre

## **Thank You**

### iorioa@mcmaster.ca

### hemophilia.mcmaster.ca

Hamilton Health Sciences



Inspiring Innovation and Discovery